CURRICULUM GUIDELINES | A: | Division: Academic | | | Date: | | 06 June 2000 | | |--|--|------------------------|-----------|--|----|--------------------------|------------| | В: | Department/
Program Area: | Science and Technology | | New Course | | Revision | X | | | | | | If Revision, Section(s Revised: |) | J,P | | | | | | | Date Last Revised: | | 13 Septem | ber 1994 | | C: | СНЕМ 2 | 10 D: Ch | iemical E | nergetics and Dynami | cs | E : | 5 | | F | Subject & Course N | No. Descriptive Title | | | | Semeste | er Credits | | F: | Calendar Description: Topics studied will include liquids, solids, a review of redox reactions, solutions, electrochemistry, the laws of thermodynamics, equilibrium, acids and bases, ionic equilibria and chemical kinetics. | | | | | | | | G: | Allocation of Contact Hours to Types of Instruction/Learning Settings Primary Methods of Instructional Delivery and/or Learning Settings: Lecture/Laboratory Number of Contact Hours: (per week / semester for each descriptor) Lecture: 4 hours/week Laboratory: 3 hour/week Number of Weeks per Semester: | | H: | H: Course Prerequisites: CHEM 110, C Grade or better. Moreon better. Moreon better. Moreon better. | | MATH 120 must precede or | | | | | | or | | | | | | | | | I. | Course Corequisites: | | | | | | | | | J. Course for which this Course is a CHEM 303 and CHEM 310 and C | | | • | | | | | | | | | | | : | | | K. | K. Maximum Class Size: 36 | | | | | | | | | | | | | | L: | PLEASE INDICATE: | | | | | | | | | Non-Credit | Non-Credit | | | | | | | | College Cree | it Non-Transfer | | | | | | | X College Credit Transfer: Requested Granted X | | | | | | | | | | SEE BC TRANSFER GUIDE FOR TRANSFER DETAILS (www.bccat.bc.ca) | | | | | | · | # M: Course Objectives/Learning Outcomes The student will be able to: - 1. Define or explain any of the chemical terms used in the course (e.g. anode, state function, Lewis acid). - 2. Draw the unit cells for the three cubic lattices. - 3. Given the unit cell of an ionic compound, predict the simplest formula. - 4. Describe the experimental method for obtaining the dimensions of the unit cell. - 5. Explain the differences between cubic and hexagonal closest packing of spheres. - 6. Describe (or draw) the crystal structures of NaCl, diamond, graphite, CsCl, ZnS. - 7. Describe the types of possible defects in crystalline material. - 8. Describe the method of calculating lattice energies using the Born-Haber cycle. - 9. Solve problems of the following types, given a list of selected equations and log tables; - a) determination of the amount of material produced in an electrolytic cell - b) calculation of the e.m.f. of a galvanic cell - c) calculation of ΔG from electrochemical data - d) calculations involving use of the First Law of Thermodynamics - e) enthalpy changes in a chemical or physical process - f) Hess's Law - g) relationship between bond energies and ΔH - h) calculation of ΔS from absolute entropies - i) calculation of ΔG for a chemical reaction - i) calculation of K from ΔG° - k) equilibria in gaseous systems - 1) equilibria in aqueous acid-base systems (pH, weak acids, hydrolysis, buffers) - m) equilibria involving slightly soluble salts, and coordination complexes - n) order, rate constant and activation energy of a chemical reaction - o) amounts of material involved in redox reactions based on gram equivalent weights - 10. Calculate the oxidation of an atom in any ion or molecule - 11. Identify any changes in oxidation number of an atom in a chemical equation. - 12. Balance redox equations for reactions occurring in acid or basic solutions. - 13. Determine the gram equivalent weight of a substance involved in a redox reaction. - 14. State Faraday's Law of Electrolysis. - 15. Determine whether chemical reactions will occur spontaneously under standard conditions, given a table of standard electrode potentials. - 16. Using a table of standard electrode potentials, compare the relative strengths of oxidizing agents or reducing agents. - 17. Discuss the electrochemical basis of the lead-acid storage battery. - 18. Distinguish between the various types of heats of reaction and be able to write the corresponding chemical equation. - 19. Interpret the signs of enthalpy changes. - 20. Describe both qualitatively and quantitatively the contributions of ΔH and ΔS to reaction spontaneity. - 21. Predict the sign of ΔS for various chemical and physical processes. - 22. Interpret equilibrium in terms of the thermodynamic driving forces. - 23. Write the chemical equation for the equilibrium involving weak acids and bases in aqueous solution. - 24. Classify various aqueous salt solutions as acid, basic or neutral and write the corresponding equation. - 25. Relate acid strength to molecular structure for a series of oxy-acids. - 26. Explain how an acid-base indicator works and choose suitable indicators for various acid-base reactions. - 27. Using the relevant solubility data, decide whether a precipitation reaction will occur and write a net ionic equation for the reaction. - 28. Verify that the proposed mechanism of a chemical reaction is consistent with the experimentally determined rate law. #### **Laboratory Objectives** The student will be able to: - 1. Give the name and describe the use of some of the more common laboratory equipment. - 2. Perform accurately standard laboratory techniques using the accepted methods, such as titration, weighing, pipetting. - 3. Give the random and systematic errors inherent in each of the common quantitative techniques which are used in the laboratory. - 4. Given an experimental problem, state the series of steps and the accepted techniques required to solve that problem in the laboratory. - 5. Write a report based on observations and data obtained in the laboratory using a standard report format. - 6. Given a set of experimental data or using data obtained in the laboratory, apply the appropriate mathematical techniques (e.g. graphical analysis, solution of equations, etc.) necessary to obtain a numerical result. - 7. Using the data, observations or results of an experiment, determine the relationship between experimental variables. - 8. Analyse the overall laboratory experiment with respect to errors inherent in the method or techniques. - 9. Give the theory upon which the experiment is based. #### N: Course Content ## 1. Liquids and Solids Phases: Kinetic-molecular theory for liquids; vaporization; boiling, triple and critical points; Clausius-Clapeyron equation; phase diagram of a one-component system; types of solid crystal systems; X-ray diffraction; Born-Haber cycle. #### 2. Solutions Types of solutions; the solution process; concentration of solutions; Henry's Law; Raoult's Law; distillation; colligative properties of electrolyte and non-electrolyte solutions; vapour pressure lowering; freezing point depression; boiling point elevation and osmotic pressure. ## 3. Redox and Electrochemistry Review of oxidation, reduction, oxidation numbers and balancing redox equations. Fundamentals of electrochemistry, electrolysis, electrolytic cells, quantitative aspects of electrolysis, electrochemical cells, electrode potentials, e.m.f., concentration effects (Nernst equation), commercial cells, corrosion. #### 4. Chemical Kinetics Collision theory; activation energy; reaction rates and factors that influence them; catalysis; mechanism and rate equations; steady-state approximation; zero, first and simple second order reactions, half-life. #### 5. Equilibrium Reversibility and equilibrium; K_o and K_o calculations; Le Chatelier's principle. #### 6. Thermodynamics Heat, work, enthalpy, Hess's Law, calorimetry, First Law of Thermodynamics, bond energies, Entropy, free energy and spontaneity, relationship of K to ΔG , temperature dependence of K. ## 7. Acids and Bases Arrhenius, Bronsted-Lowry and Lewis acids and bases. ## 8. Ionic Equilibria K_w , K_a , K_b , pH, pOH, pK, indicators, strong acids and bases, weak acids and bases, hydrolysis, pH of salt solutions, polyprotic acids, common ion effect, buffer solutions, titration curves, solubility product (K_w) . ## Lab Course Content | 1. | Redox Reactions | 6. | Spectrophotometric determinations | |----|------------------|-----|---| | 2. | Solids | 7. | Thermochemistry | | 3. | Electrochemistry | 8. | Quantitative analysis | | 4. | Thermodynamics | 9. | Kinetics | | 5. | Equilibrium | 10. | Inorganic chemistry: preparation of a coordination compound | | | | 11. | Acids and bases. | # O: Methods of Instruction The course will be presented using lectures, problem sessions and class discussions. Films and other audio-visual aids as well as programmed material will be used where appropriate. Problems will be assigned on a regular basis which are to be handed in and marked. The laboratory course will be used to illustrate the practical aspects of the course material. Close coordination will be maintained between laboratory and classroom work whenever possible. This will be accomplished by discussing laboratory experiments in class and when necessary, by using the lab period for problem solving. P: Textbooks and Materials to be Purchased by Students R.H. Petrucci & W.S. Harwood: General Chemistry 7th Ed. Maxwell MacMillan Canada, Toronto; 1997 Douglas College Laboratory Manual Chemistry 210 O: Means of Assessment The student's performance in the course will be evaluated in the following fashion: - 1. Laboratory work (30%) - a) Laboratory reports: 14% b) Laboratory Practical: 8% c) Unknowns: 8% - 2. Examinations (70%) - a) A final comprehensive examination during the exam period: 30% - b) A minimum of two in class tests will be given throughout the semester: 30% - c) Any or all of the following evaluations, at the discretion of the instructor: problem assignments, quizzes, class participation [5% maximum] (10% in total) R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR Course Designer(s) Education Council Curriculum Committee Representative Dean/Director Registrar UBC 121 + 122 (With CHEM 110) SFU 103 and 119 U.Vic Chem 102 (1.5)