Code | Course Description |
---|---|
PHYS 1104 | Practical PhysicsThis course is intended for students who have not taken Physics previously or who have taken some secondary school Physics and want a review. |
PHYS 1107 | Introductory General Physics IThis is a non-calculus based course in mechanics. Topics include: vectors; particle kinematics and dynamics; work, energy and power; linear momentum; rotational motion; principles of equilibrium; oscillatory motion; waves; sound. |
PHYS 1108 | Physics for Life Sciences IThis is a physics course for life sciences students. All the topics covered will be illustrated with applications takes from the life sciences. Topics will include force and motion, conservation of energy, conservation of momentum, conservation of angular momentum, fluids, waves, properties of soft matter and thermal physics. |
PHYS 1110 | MechanicsThis is a calculus-based (derivatives and anti-derivatives) course in mechanics intended for students pursuing a career in Engineering or Physics. Topics include vectors, particle kinematics and dynamics, work and energy, thermodynamics, heat engines, momentum and impulse, motion of systems, rotational motion, statics and equilibrium, oscillatory motion, wave motion, and sound. |
PHYS 1170 | Mechanics for Applied ScienceThis course is intended for students proceeding to studies in Applied Science or Engineering. Topics include statics of particles, rigid body forces and equilibrium, structural analysis, internal forces, friction, particle kinematics and dynamics, systems of particles. |
PHYS 1207 | Introductory General Physics IIThis is a non-calculus based course intended for students pursuing a career in Life Sciences. Topics include electrostatics; direct current circuits; magnetic force and field; electromagnetic induction; geometric optics; interference, diffraction, and polarization of light; modern physics and radioactivity; temperature; thermal properties of matter; gas laws; laws of thermodynamics. |
PHYS 1208 | Physics for Life Sciences IIThis is a physics course for life sciences students. All the topics covered will be illustrated with applications takes from the life sciences. Topics will include waves and optics; electricity and magnetism; modern physics emphasizing radioactivity. |
PHYS 1210 | Electromagnetism, Optics, Modern PhysicsThis is an integral calculus-based course intended for students pursuing a career in Engineering or Physics. Topics include electrostatics; capacitance; direct current circuits; magnetic force and field; electromagnetic induction; ac circuits; circuit simulation; computer design of circuits; wave nature of light; geometric optics; wave optics, elements of quantum, atomic and nuclear physics. |
PHYS 1234 | Physics for Liberal ArtsThe course is designed primarily for liberal arts majors. It is a basic introduction to physical science and is intended for students with little or no science background. It will present an integrated approach to topics in physics: the topics themselves, as well as the historical reasons for their acceptance. The topics will include the historical evolution of scientific method, laws of motion, gravitation, matter and energy, heat and temperature, light, atoms and atomic nuclei, special relativity, and elements of astronomy. Laboratory exercises will illustrate the practical applications of the course content. |
PHYS 1308 | Physics for Life Sciences LabThe course will consist of a series of labs involving both activities and experiments based on concepts covered in PHYS 1108 and PHYS 1208. Experiments in mechanics, heat, optics and electricity are designed to augment the concepts covered in the Physics for Life Sciences courses. |
PHYS 2211 | Classical MechanicsA course in classical mechanics covering kinematics, dynamics, calculus of variations including Lagrange's equations, non-inertial reference frames, central forces and orbits, rigid body motion, and Hamiltonian mechanics. |
PHYS 2250 | Introduction to Special Relativity and Quantum MechanicsThis course is an introduction to modern physics. The first part will focus on special relativity: Lorentz transformation, relativistic kinematics and dynamics, and conservation laws. The second part will focus on quantum mechanics: matter waves, early quantum models as well as the experimental evidence for quantization, a qualitative discussion of the concepts of quantum mechanics and their application to simple systems. |